Windings of planar random walks and averaged Dehn function
نویسندگان
چکیده
منابع مشابه
Windings of Planar Random Walks and Averaged Dehn Function
We prove sharp estimates on the expected number of windings of a simple random walk on the square or triangular lattice. This gives new lower bounds on the averaged Dehn function, which measures the expected area needed to fill a random curve with a disc.
متن کاملSubdiffusion in time-averaged, confined random walks.
Certain techniques characterizing diffusive processes, such as single-particle tracking or molecular dynamics simulation, provide time averages rather than ensemble averages. Whereas the ensemble-averaged mean-squared displacement (MSD) of an unbounded continuous time random walk (CTRW) with a broad distribution of waiting times exhibits subdiffusion, the time-averaged MSD, delta2, does not. We...
متن کاملNumerical studies of planar closed random walks
Lattice numerical simulations for planar closed random walks and their winding sectors are presented. The frontiers of the random walks and of their winding sectors have a Hausdorff dimension dH = 4/3. However, when properly defined by taking into account the inner 0-winding sectors, the frontiers of the random walks have a Hausdorff dimension dH ≈ 1.77.
متن کاملWindings of planar stable processes
Using a generalization of the skew-product representation of planar Brownian motion and the analogue of Spitzer’s celebrated asymptotic Theorem for stable processes due to Bertoin and Werner, for which we provide a new easy proof, we obtain some limit Theorems for the exit time from a cone of stable processes of index α ∈ (0, 2). We also study the case t → 0 and we prove some Laws of the Iterat...
متن کاملAveraged Dehn Functions for Nilpotent Groups
Gromov proposed an averaged version of the Dehn function and claimed that in many cases it should be subasymptotic to the Dehn function. Using results on random walks in nilpotent groups, we confirm this claim for most nilpotent groups. In particular, if a nilpotent group satisfies the isoperimetric inequality δ(l) < Clα for α > 2 then it satisfies the averaged isoperimetric inequality δ(l) < C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
سال: 2011
ISSN: 0246-0203
DOI: 10.1214/10-aihp365